SIXTH-ORDER COMPACT FINITE DIFFERENCE METHOD WITH DISCRETE SINE TRANSFORM FOR SOLVING POISSON EQUATION SUBJECT TO DIRICHLET BOUNDARY CONDITION

Show simple item record

dc.contributor.author Amanuel Hossiso Gatiso, Amanuel
dc.contributor.author Tefera, (PhD) Melisew
dc.contributor.author Alemayehu, (PhD) Getinet
dc.date.accessioned 2021-07-01T02:59:01Z
dc.date.available 2021-07-01T02:59:01Z
dc.date.issued 2020-12
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/3820
dc.description 64p. en_US
dc.description.abstract In this thesis, an efficient algorithm based on sixth-order compact finite difference and fast discrete sine transform is developed for solving one and two dimensional Poisson equations with Dirichlet boundary conditions. Centered compact finite difference is employed to approximate second order derivatives, and thereafter, each second-order derivative term is replaced by its higher order Taylor series expansion which helps to develop the scheme based on weighted sum and higher order finite differences. This finally results in an implicit compact finite difference scheme which approximates the second order derivatives with six order accuracy. When implementing the method, the developed sixth-order compact difference scheme is applied to discretize the Poisson equation which leads to a large system of linear algebraic equations. The discretization process produces systems consisting of tri- and penta-diagonal matrices. In addition, in the 2D case, we used the Kronecker (Tensor) product to obtain matrices associated with the system. In both cases, an efficient and fast solver is developed based on discrete sine transform which is found to significantly reduce the computational cost for solving large systems and approximate the solution with sixth-order accuracy. We have illustrated numerically that the proposed method converges with sixth-order accuracy coinciding with the theoretical analysis. Moreover, the efficiency of the method is illustrated by solving different test problems. According to our experiments, the proposed sixth-order method provides more accurate solutions than the existing fourth-order compact finite difference method. In addition, by varying the number of gird points from small to large, which is equivalent to varying the mesh-size from large to small, we came to realize that our method is numerically stable en_US
dc.description.sponsorship Haramaya University en_US
dc.language.iso en en_US
dc.publisher Haramaya university en_US
dc.subject Poisson equation, sixth-order, compact finite difference scheme, discrete sine transform en_US
dc.title SIXTH-ORDER COMPACT FINITE DIFFERENCE METHOD WITH DISCRETE SINE TRANSFORM FOR SOLVING POISSON EQUATION SUBJECT TO DIRICHLET BOUNDARY CONDITION en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search HU-IR System


Advanced Search

Browse

My Account